Improving Machine Translation Quality Estimation with Neural Network Features

نویسندگان

  • Zhiming Chen
  • Yiming Tan
  • Chenlin Zhang
  • Qingyu Xiang
  • Lilin Zhang
  • Maoxi Li
  • Mingwen Wang
چکیده

Machine translation quality estimation is a challenging task in the WMT evaluation campaign. Feature extraction plays an important role in automatic quality estimation, and in this paper, we propose neural network features, including embedding features and cross-entropy features of source sentences and machine translations, to improve machine translation quality estimation. The sentence embedding features are extracted through global average pooling from word embedding and are trained by the word2vec toolkits, while the sentence crossentropy features are calculated by the recurrent neural network language model. The experimental results on the development set of WMT17 machine translation quality estimation tasks show that the neural network features gain significant improvements over the baseline. Furthermore, when combining the neural network features and the baseline features, the system performance obtains further improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Continuous Space Language Models for Machine Translation Quality Estimation

We present novel features designed with a deep neural network for Machine Translation (MT) Quality Estimation (QE). The features are learned with a Continuous Space Language Model to estimate the probabilities of the source and target segments. These new features, along with standard MT system-independent features, are benchmarked on a series of datasets with various quality labels, including p...

متن کامل

QUality Estimation from ScraTCH (QUETCH): Deep Learning for Word-level Translation Quality Estimation

This paper describes the system submitted by the University of Heidelberg to the Shared Task on Word-level Quality Estimation at the 2015 Workshop on Statistical Machine Translation. The submitted system combines a continuous space deep neural network, that learns a bilingual feature representation from scratch, with a linear combination of the manually defined baseline features provided by the...

متن کامل

SHEF-LIUM-NN: Sentence level Quality Estimation with Neural Network Features

This paper describes our systems for Task 1 of the WMT16 Shared Task on Quality Estimation. Our submissions use (i) a continuous space language model (CSLM) to extract sentence embeddings and cross-entropy scores, (ii) a neural network machine translation (NMT) model, (iii) a set of QuEst features, and (iv) a combination of features produced by QuEst and with CSLM and NMT. Our primary submissio...

متن کامل

Quality Estimation from Scratch

This thesis presents a deep neural network for word-level machine translation quality estimation. The model extends the feedforward multi-layer architecture by [Collobert et al., 2011] to learning continuous space representations for bilingual contexts from scratch. By means of stochastic gradient descent and backpropagation of errors, the model is trained for binary classification of translate...

متن کامل

Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)

Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017